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ABSTRACT

The receiving area of a dipole antenna immersed in a moving
medium is calculated by employing Minkowski's electrodynamics
of moving media together with the power conservation law.
Approximate results accurate up to the first order in v/c

are obtained, v being the speed of the medium and ¢, the vacuum
speed of light. Two cases are studied in detail: 1in case (1)
the moving medium is simple, and in case (ii) the moving medium
is an ionized gas (plasma). It is found that the receiving and
transmitting patterns are identical in case (i), but not in
case (ii). In both cases the effect of the motion of a medium
on the receiving characteristics of a dipole antenna is brought
out explicitly in the recelving-area formula which is then
compared with the corresponding one when the medium is at rest.
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I. INTRODUCTION

In antenna theory the recelving area of an antenna plays a
very important role, since 1t directly represents the power
extracted from the incldent wave by the antenna. The receiving
area of an antenna in vacuum or in statlionary simple media has
been known for a long timel’ 2
into this subject have dealt with more complicated situations

such as receiving antennas in magneto-ionic media3’ 4. However,

s and more recent investigations

no attention has been given in the literature to the problem
of finding the recelving area of an antenna immersed in moving
media. The reason may be that the complementary problem of

a dipole antenna radiating in the presence of moving media had
not been solved until very recent1y5’ 6, 7. The solutlon of
the complementary problem makes possible a calculation of the
recelving area of a dipole antenna in moving media. In the
present paper such a calculation will be given for the

case where the dipole antenna 1is in a moving lonized gas
(plasma). The method of calculations will invoke Minkowskl's
electrodynamics of moving media together with the power conserva-
tion law.



IT. A GENERALIZATION OF THE RECIPROCITY THEOREM
FOR MOVING MEDIA

In this section we shall examine the conventional method of

calculating the receiving area of an antenna 1in a stationary
medium and see if the conventional method can be extended to
the present case where the recelving antenna 1is lmmersed in a

moving medium.

The conventional method is based on the well-known reciproclty
theoram. Iet El,‘§1 be the electromagnetic field radlated by
a current 21 occupylng a finite volume Vi, and let §2,.§2 be
the electromagnetic field radiated by a curr'ent.g_2 occupylng a
finite volume V2. The two current sources oscillate harmoni-
cally at the same frequency and the medium occupylng the space
outside of V, and V2 is isotropic and linear. Then 1t follows

1
directly from Maxwell's equations,

JV .gligg av = IV,.ggﬂgl av, (1)
2 2

or

js(glx_}gg-g x Hy)'n dS = 0O, (2)

where n is the outward unit normal to the closed surface S
excluding the sources. Either of these two equatlons has served
as the starting point for many investigations into the problem
of findlng the effective receiving area A of an antenna when

the receiving antenna is perfectly matched to its load for
maximum power absorption. These investigations have led to the
following well-known formula:



2
A== 8(6,,0,) K (8,0,) (3)

where )\ 1s the wave length of the incldent radlation in the
medium, (eo,¢o) is the direction of the incident propagation
vector, g 1s the gain of the antenna when it is in transmlssion,
and K 1s the polarization loss factor and is equal to the
square of the coslne of the angle between the lincldent electric
vector and the far-zone scattered electric vector.

When the surrounding medium is anisotroplc, however, the
reciprocity theorem in the form of eq. 1 or 2 no longer holds.
In the present case of interest, the anisotropy of the medlum
is caused by a uniform motion and the reciprocity. theorem can
be generalized into the following form (see the appendix):

By ) _ ’ )y
J”Vl I E{-y) av J‘V2 I, B (v) av (4)

or
(B W xs () -5 () x i (m]pds-o0 ()

Here E, (v), Hy (v) is the electromagnetic field radlated by a
source il when the medium passes by the source at a velocity v;
E, (72),.52 (-v) 1s the electromagnetic field radlated by a

source J, when the medium 1s moving at a velocity -v wlth respect

to the sgurce. Since the generalized reciprocity theorem (eq. 4
or 5), unlike the usual reciprocity theorem (eq. 1 or 2),
relateslgl,.gl andge,_lj2 under different conditions, namely,
for opposite directions of the veloclty v, 1t no longer lends
itself to the solution of the problem of finding the receiving

area of a dipole antenna in a moving medium. Hence, the present



problem has to be approached from a different starting point.
In the next sectlon the power conservation law will be formula-
ted and this law will serve as the point of departure.



III. THE POWER CONSERVATION LAW

Consider a plane monochromatic wave incident on a dipole
antenna which is immersed in a moving simple medium or in a
moving ionized gas (plasma). Then, the time-average power
removed from the incident wave must equal the time-average
power scattered by the antenna plus the time-average power
absorbed by it. This 1s the essence of the power conservation
law, and it holds so long as the surrounding medium is non-
dissipative. ILet E'"C be the electric vector of the incident
wave and J the current density induced on the dipole antenna.

Then the power conservatlion law takes the following form:

% Re | 35(x)-E(r) av = Po, + Pops (6)

where PSC and Pab denote respectively the time-average scattered
power and the time-average absorbed power, and Re denotes the
real part of the expression followling it. The term on the left-
hand side of eq. 6 represents the interaction of the dipole
antenna with the incident wave. We now go on to investigate

1f this interaction can be lnterpreted as interferences between
the 1Incldent fileld and the far-zone scattered field.

For harmonlic-tlme dependence of the form e-iwt, Maxwell's equa-
tlons are
vx E=1iw B (7)
vx H=-iw D+ J (8)
from which Poynting's theorem follows:
v-(E x HY) -1u(B-H*-E-D%¥) = -3*-E. (8)



Taking the real part of eq. 8 and integrating the resulting ‘
equation over a volume V bounded by a closed surface S we |
obtain

Re | (ExH)n dA+Re | J*Eav
s v

=-oIn [ (BE -ED)av,  (9)

where Im denotes the imaginary part of the expression followlng
it. Let the source-free solution of eq. 7 be the incident

wave and the particular solutlon be the scattered wave. Then
the field vectors E, B, D, H in eq. 9 can be taken as the sum
of the incident plus the scattered field vectors. Substituting
E :-Einc +_§Sc,_§ =.Einc +_§SC, etc, into eq. 9 we obtain

3re g [ 4 5) x (69 + 1) ]n o

+ E°%) av, (10)

provided that

\
|
!
Im I [(Binc + Bsc)_(Hinc + Hsc)*_
vk - - - |
|
|
|

(Einc +_]i:sc).(—Dinc +.PSC)*] av = 0. (11)



We shall show that eq. 11 holds for the case of moving simple
media but not for the case of moving ionized gases. When a
simple medium having permittivity ¢’ and permeability u’ in its
rest frame is moving at a velocity v with respect to the
laboratory frame, the constitutive equations are5

D+ vxH=¢' (E+vxB)
o}
1 yl
B--3vxE=yu' (H-yvxD), (12)
c
where ¢ 1s the vacuum speed of light. Solving egs. 12 for
D and B in terms of E and H, we obtaln '
D=egk+0axH
B=yH-Q0xE (13)
where
2
1
4 = ‘2_1 v,
c
2 2
£ = 2 (o + v?(1-n"?)gp],
! 2 2
w =t U+ y?(1-n%)gs], (14)
Y (1-n'“8%)
1
B = v/e, vy i(l 52)—2, n’ = cJu’e’, U = unit dyadic. Using
eq. 13 for B .Pinc and B DSC separately, one can easily

see that the integrand in eq. 11 has no imaginary part. Conse-
quently, eq. 10 is valid for moving simple media.



In the case of moving ionized gases, ¢/ and n’ are functions

not only of frequency w but also of wave vector k, and therefore,
eds. 13 hold only in (w, k) space. Transforming eqs. 13 into

(w, r) space, one obtains for a moving ionized gas,

2=_§'§+_(_)X_I'_I_ (15)
B-yH-0xE

Where e, y and O are integral operators whose spatial Fourier
transforms are respectively given by egs. 1l4. Because the
constitutive eqgs. 15 for a moving lonized gas are in integral
form, the imaginary part of the integrand in edgs. 11 is no longer
identically zero, and consequently, egs.10 does not hold for

the case of moving ionized gases.

For a moving simple medium we obtain by substituting eq. 10

into eq. 6
1 inc c inc scy¥
% Re fs[,(*_E + E®) x (HTPC + H59) ]-_r_ldA +P, =0 (16)

where we have used

In eq. 16, the term corresponding to the incident wave alone
Integrates to zero, and the term corresponding to the scattered
wave alone 1integrates to give the total time-average scattered
power P_,. Hence, eq. 16 reduces to

2 =

1 inc sc* sc Inc#*
Re js(g x H +E° + H )-ndA + P, + P, =0 (17)



This 1s the usual form of the power conservation law described
in the literature for stationary simple medla and is taken

as the starting point for deducing the well-known optical
theorem in electromagnetic scattering problems6. Here we

have established the validity of eq. 17 for the case of moving
media. For moving dispersive media (e.g., moving 1onized gases),
however, eq. 17 no longer holds and the power conservation law
takes the more general form given by eq. 16.

We shall begin with eq. 6 or 17 and proceed to calculate the
recelving area of a dipole antenna immersed in a moving medium.
The recelving area will be sought in terms of the incident flux
and the gain of the antenna when the antenna is in transmission.
However, before such a calculation can be carried out, it is
necessary to specify the form of the incident wave and to examine
the nature of far-zone scattered field in moVing media. In the
following two sections we shall study plane and spherical wave
solutions of Maxwell's equations in moving simple media and in
moving ionized gases.



IV. PLANE WAVES IN MOVING MEDIA

We shall study plane wave solutions of Maxwell's equations in
moving simple medla and in moving lonized gases. Assuming a
plane electromagnetic wave of the form exp (ik-r-iwt) we have
from Maxwell's equations,

wB (18)

I

x E

il

k x H = -wD,

together with the constitutive eqgs. 13,

lo
ii
Jes|

e E+ 0x H (13)

I

B=pyH-0axE,

E,‘E,_P, H are constant field vectors and ¢, y, Q are defined
by egs. 14. Elimination of B and D from egs. 18 by means of
egs. 13 glves

5 XE=wH (19)
5 xH=-wek

where
s =}g+-@9.

Here and henceforth we shall assume that the speed of the
medium v is much smaller than the vacuum speed of light ¢, i.e.,
B8 = v/c <<1, and we shall retain terms up to the order of 8.

In the case of moving simple media we have from egs. 19, to a
first order in B,

10



s xE=u'H (20)

It

s x H = -uwe'E,

where the permittivity e’ and the permeability U' are constant
in the rest frame of the medium. Equations 20 show that

E/H = .Je’/u’ and that E, H, s are mutually perpendicular. This
means that the wave impedance is not affected by the motion of
the medium in this approximation. However, the Poynting vector,
which is in the direction of s, no longer coincides with the
direction of the wave vector k. From eqs. 20 we find

7
k = EEE (1-a cos 8) (21)

sin X = sin 8 (l-a cos 8),

where a = B (n'2—1)/n', 8 = angle between k and v, and X = angle
between s and_y. Hence, to a first order in g, plane waves can
be represented as

E-E Ji(1l-a cos g)k-r (22)
.I-.{ :‘Vel/u' _e_s 'X_E_'
Here we have defined k = n’w/c, ey = unit vector of s, and

E, = constant vector.

In the case of moving lonlzed gases we have

(1-8 )w
! ! €6 [l :‘ (23)

= ‘J, ) e =
" ° (w -v- k)

11



where wp 1s the plasma frequency and is a Lorentz invariant.
To a first order in B, eas. 19 become

S X E= wu H

o._
5 x H=-we'E
Here
kp2
s =k _'IF__-E
-7 o
, k_° 8-k k2
€ 1P __ o= D
€ 5 3
o ko ko

and k_ = w/c, kp = wp/c. From eqs. 24 we find

k =k Pky (25)
sin X = sin 8 (1 + b cos 8),

where b = kaz/(k ko), X and 8 have the same meaning as in the
case of moving simple media. Hence, to a first order in B,
plane waves in moving lonized gases are of the form

E=g XTI (26)

O
£ /20 (1-b cos 8) e, x E.
o Mo

H

Here k 1s given by eq. 25,3S is a unit vector, and Eo is a
constant vector. Equations 26 show that, to a first order in g,
the motion of a 1onized gas does not affect the propagation
vector but does affect the wave impedance and the direction of

energy flow.

12



V. DIPOLE FIELD IN MOVING MEDIA

The problem of finding the radiation field of an oscillating
dipole immersed in a moving medium has been solved recently ’8.
The formulation of the problem is based on the covariance of
Maxwell's equations. A differentlial equatlion for the potential
L-vector 1s first deduced in the rest frame of the dipole with
respect to which the medium is moving at a velocity v. The
differential equation is then solved by the Green's function
technique. With a knowledge of the potential 4-vector, the

dipole field 1s obtained by differentiation.

It was found that, in the case of moving simple media, the
far-zone dipole f’ield7 is, to a first order in B,

-iakr cos 8 eikr

Z-I:TT]."

E = Wi’ ex(pxe,)e

Q!
§=ﬁgrxg’

v

(27)

where p = dipole moment, e, = unit radlal vector, a = B(n’g 1)/n’ ,

k = n'w/c, and 8 = angle between e, and v . The galn 1s defined
as

e Re (E x E%)-gr

g(e’w) = ¥ . (28)
I Re (ExH )-e_ dA
3 =+ =71"=
Substitution of eg. 27 into eq. 28 gives
_ 2
=31 1
g(6,0) = 51L& X (Ep X ET)J s (29)

where €5 1s the unlt vector in the direction of p .

13



In the case of a moving lonlized gas, we make use of the results
in Reference 8 and find that, to a first order in 8, the far-
zone dipole fleld 1s given by

E

[

- -  lkr
2,
=0 e, x (Rxe) -bp - (e.eq+ eee.)sin @ om

eikr
mk[gr xp-b (cosb e, xp-sind egqx E)] o

s

where b = Bkg/(kok), and k° = kg - kg . Introducing the unit
vector e :
e, = (1 + b cos e)gr -be,=¢g,+bsinb ey, (31)
we can rewrite egqs. 30 as
1kr

e
]

T 1 e
oo leg x (27 g) | T -

(32)
ikr

H = wk(l - b cos 8) (e x p) %FF— .

Equations 32 show that E, H and e, are mutually perpendicular,
and hence,gS i1s in the direction of energy flow. The gain is
now given by

(33)

Insertion of egs. 32 1n eq. 33 gives

4r(1 - b cos 8) |e. x (e x e.) 12
g(6,9) = = 5 ) Leg (ep * &5 ]
I (ep x 85)° (1 - b cos 6) dn

14



The integral can be evaluated as follows, keeplng only terms of
the order of 8.

J(e X 95)2(1 - b cos 6)aQ = ﬂ-l—(e e

2
iLt-(egrep) ](1-b cos 8) aQ

+ b J cos 8 (e e

;
=3+ b | cos 6 (e.e

Thus, we obtaln for the gain

- 42
Leg x (e x 8 )] - (34)

oW

g(6,9p) =2 (1 - b cos 6)

In terms of e ., e4 and & ©4- 34 takes the form

2

g(8,0) = %'[gr x (gp x Er)]

- .2 \
- %—b {COSGLET X (gp X gr)J + QSinG(gr-gp)(ge-gp)j. (35)

Examlnation of eq. 29 shows that, to a first order in B8, the
motion of a simple medlum has no effect on the gain of the
dipole antenna. However, the motion of an ionized gas, as
shown in eq. 35, has a first order effect on the gain.

15



VI. POWER ABSORPTION AND RECEIVING AREA OF A
DIPOLE ANTENNA IN MOVING SIMPLE MEDIA

We shall now calculate the power absorption of a dipole
antenna in terms of the incident flux, the antenna gain, and
the polarization loss factor when the dlpole antenna is
immersed in a moving simple medium.

Our point of departure 1is the conservation law (eq. 17)
together with eqs. 22 for the incident wave and eqs. 27 for
the scattered field. Without loss of generallty, we choose
the polar axls of the spherical coordinate system (r,6,¢) to
be in the direction of v. Then from eqs. 27 we have

* -ikr
(E_incx S ). e

e, = Wk = E [e x (p x e, )Ieikrf(e %)

* ikr - *
(E?cx H1nc )-e e

&p = WK T [ &y X (Eo X 25)

]
—
.

J -1krf(6,¢) ,
ex(pxe)]e

where

f(6,¢) = a cos 6 + (1 - a cos eo)x

[sin 8, sin 6cos (¢

(60, ¢,) being the direction of propagation of the incident
wave 1in spherical coordinates.

Let us now conslider an integral of the form
2n

F I h(6,¢) eiikrr(e’¢)sin 0 do d¢
[IR )

for kr >> 1. To evaluate this integral we shall invoke the
method of stationary phase. The stationary points (es,¢s)

16

(36)

o - ¢) + cos 6, cos 61,

(38)

(37)



are obtained by solving the followlng equations:

sg = - a sin 6 + (1L - a cos eo)x
[sin 6, cos 8 cos (¢O - ¢) - cos g, sin © ]==O
(39)
of _ (1 -acos 8. ) sin 8_sin 6 sin (¢, - ¢) = O
39 0 o) 0
From eqs. 39 we find, to a first order in B,
eS =X s ¢S = ¢O 3 (40)
and
B =T - X, ¢g =T + g, (41)
where ¥ 1s given by eq. 21; 1.e.,
sin x = sin 8 (1L - a cos 90).
Recalling that a 1s of the order of B, we then have
X =86, -asin b . (42)
Evaluating integral 38 around the two stationary points,
we obtain, after some lengthy calculationsg,
2
} f h(o,5)e* (88510 6 ap ag
(%3 O o N
-oni[ +ikr Fikr”
~ EET{* h(x,¢o)e T h(m - x, 7+ ¢o)e rJ' (43)

Making use of formula 43 and noting that €, = &5 when 8, = X,

_s
by = $os and that e, = -&4 when GS =T - X5 85 =T+ ¢, We get

17



" x e ) e Bk, (44)

and

+Ee x (pxeg) ety (45)

In deriving eq. 45 we have used the fact that gs-gz = 0.

Adding eqgs. 44 and 45 we find that the power conservation law
17 glves

Im Ez-{gs x (px gﬁ)j =P, + Py - | (46)

Nl e

Let the dipole antenna be perfectly matched for maximum power
absorption. Then the power absorbed by the antenna equals the
power scattered by it. The scattered power can be found by
integrating the Poynting vector obtained from the far fileld
expressions 27. Hence

B _wpue
Pab - Psc - 12 m lpf (47)

The condition of maximum power absorption further implies that
p be 90 degrees out of phase with Eo’ as can be seen from the

18



Interaction term in eq. 6. Here p = o Pand Ej = e  E,

& and e, being unit vectors and the incident wave being
taken to be linearly polarized. Now we can solve eq. 46 for
| p |, and then substituting the resulting | p | into eq. 47, we

find

\°  dnc 3~ -2
Fap = 17 78 * (ep xeg)i K(xi0,) s (48)
where the incident energy flux Sinc 1s given by

n *
Sinc _ %_j &T_E;nc' Einc ,

€

and the polarization loss factor K is defined as

o) 2! EM(x,0,) E%C(x,0,) | @
Xs® =
°T 1EM™C(x,0,) | A (xi0,) | 2
By virtue of eq. 29 we finally obtain
Xe inc
Pop = I 8(X:05) K (,0,) 8777, (49)

whence the effective receiving area A is

2
A= 3= 8(00,) K (X,8,) . (50)

Comparing our formulas 49 and 50 for the power absorbed by and
the receiving area of a dlpole antenna in moving simple media
with the corresponding well-known formulas in stationary simple
medla, we come to the following conclusion. To a first order
in B, the formulas in the two cases have the same formal
structure except for one difference, i.e., 1n the case where
the medium 1is in motion it 1s the direction of the incident
Poynting vector, not the direction of the propagation vector of
the inclident wave, which enters the formulas explicitly.

19



Let us now consider very briefly how we can re-derive eqs. 49
and 50 starting from the power conservation law 6. This con-
sideration wlll provide us a guldeline when we calculate the
recelving area of a dipole antenna in a moving ionized gas.

For a recelving dipole antenna situated at the origin, eq. 6
glves

5 Imp-E =P +P

Under the condition of maximum power absorption this equation
yields a unique solution for |p¢. With a knowledge of \p lwe
obtain
2 2 1inc
_ 3\ .
Pab = B (88p) 8
This 1s as far as we can get from conservation law 6. To
proceed further we note that, for any unit vector e perpen-
dicular to e, we have g -e, = go-Lg.x (gp X g)] . To obtain
eqs. 49 and 50 we must set e =g - Thls choice of e will be
used in the following section.

20



VII. POWER ABSORPTION AND RECEIVING AREA OF A
DIPOLE ANTENNA IN MOVING IONIZED GASES

Let us now calculate the receiving area of a dipole antenna
immersed in a moving ionized gas. We shall first determine the
induced dipole moment from the power conservation law under

the condition of maximum power absorption. Then we shall
calculate the power absorbed by the dipole antenna in terns

of the incident flux, the gain, and the polarization loss factor.

As was shown in Section III, the power conservation law in a
moving ionilzed gas takes the form of eq. 6. Writing

J(r) = -iwp 8(r) and using eq. 26 for Einc, we obtain from eq. 6,

O Tm p.Er = P+ P (51)
2 P&y = Tse ab °

PSc can be obtained by integrating the Poynting vector formed

from the far field expressions eqs. 30 and is found to be

wﬁl moeo

1
5 2
Pse™ 12om (1 -x)%]p]| s (52)
where X = wpz/wg. Assume that the dipole antenna 1s perfectly
matched for maximum power absorption. Then Pab = PSc and hence

eq. 51 gives

Im p- 2

* ‘”3“@/”060 1
Eg=—3—— (1 -X)%|p]| (53)
Since the condition of maximum power absorption demands that p
and Eo be 90 degrees out of phase, eq. 53 suffices for the
determination of p. Writing p = 1 a E, (o. being a constant),

we find from eq. 53 that a, and hence p, is given by

3 e_‘e
p=1a E = P 0 E

o 1 o
2 w%l ﬁ €
O 0 0

(1 -X)
21
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where & and e, are unit vectors in the directions of p and E

respectively. Insertion of eq. 54 in eq. 52 gives

2 € 1
1 2
Pap = Fse = %%ﬁ'* ﬁgi( L -X)2 15| (gp-go)2 ’ (55)

1
where A 7% = Jhoeo (1 - X)2/ 21 . The incident energy flux
Sinc is given by

*
= % Re (g17¢ x g1 ).e

= = =8

S1nc

substitution of egs. 26 into this equation gives, to a first
order in 8,

1 /¢ i 2 1
§‘j J%(1 -X)2| Byl © =8 (1 + b cos 8) (56)
from which eq. 55 becomes
P, = 3\ sinC (1 4 b ocos 8) (e -e.)? (57)
ab = Bm o/ ‘=p =0 ’

where, as before, b = Bkg/(kko) and 8 = angle between the
propagation vector of the incldent wave and the veloclty v or,
which amounts to the same thing, the polar axis of the spherical
coordinate system.

We shall now proceed to express eq. 57 in terms of the gain
and the polarization loss factor. To do this we note that,
since génc’ the unit vector in the direction of the incident

flux, 1s perpendicular to €,s We can write

tney] . (58)

e ‘e =€ .[einc x (e x e
=0'Zp T =0 L-=s =p =

From eqs. 30 we find that the unlt vector €se in the direction
of the scattered electric fileld vector is given by

22



whence
. 2 2
.2 _ | inc inc,\ 1" .
(g6 gp) S L% X (gp * S5 )] Lo 2sc(es’¢s)] ’ (59)
where (GS,¢S) is the direction of E;nc . Inserting eq. 59 1n

eq. 57 and making use of eq. 34 we can rewrite eq. 57 as

ye 1 + b cos 6, 1no
Pab = Im T - b cos 0, 8(Bg.05) K (85,85) S . (60)

Here g i1s the galn of the dipole antenna when it 1is in trans-
mission, and the polarization loss factor K is defined as

K = )2

(Eo'gsc inc 2 sc 2
| ET ] | ERT

To the accuracy of a first order in B we can write

1 + b cos eo
1l - b cos 80

= (1 +2Db cos 60) = (1L +2Db cos es) ,

where we have used eq. 25 for the relatlion between Bs and 90
Equation 60 now becomes

XE

Pop = 7 (L +2 Db cos 8,) & (8,,8,) K(8,0,) sine (61)

from which we obtaln the effective receiving area A,

x2

A(0g,05) =7 (L +2Db cos 05) g (85,0,) K (8,,8,) . (62)

Thus we see that the receiving pattern of a dipole antenna
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in a moving ionized gas is given by (1 + 2bcos Gs)g(es,qbs),
while the transmitting pattern is g(es,¢s). The two patterns
become identical only when the direction of the incildent
energy flux is perpendicular to the motion of the ionized gas.
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VIII. CONCLUDING REMARKS

Let us now review the material which has been presented. The

main result in thls report is the evaluation of the effective
receiving area of a dipole antenna immersed in a moving medium.

Two cases have been studied in detall: in case (i) the moving
medium is simple, and in case (ii) the moving medium is an ionized
gas (plasma). The receiving area is obtained in terms of the
polarization loss factor, the antenna's gain, and the direction

of the incident energy flux. Since in practice the speed of the
medium v is always much smaller than the vacuum speed of light c,
approximate results accurate up to the first order in v/c are given.

The method of solution departs from the conventional one where
the reciprocity theorem is employed. It is shown that the
reciprocity theorem can be generalized to moving media. However,
the generalized reciprocity theorem relates the incident and
scattered fields under different conditions, namely, the incident
field in a medium moving at a velocity v and the scattered field
in a medium moving at a velocity -v. Thus, the generalized
reciprocilty theorem does not lend itself to the problem of finding
the receiving area of a dipole antenna in a moving medium. The
approach 1is found in the power conservation law which equates the
time-average power removed from the incident wave to the time-
average power absorbed by the antenna plus the time-average power
absorbed by the antenna plus the time-average power scattered by
it. For a receiving dipole antenna this conservation law 1is
particularly useful, for it yields readily the induced dipole
moment from which the receiving area can be easily calculated.
For a receiving antenna of more general type the problem must be
treated as a boundary-value problem which, in principle, can be
solved once the Green's function in a moving medium is known.

In case (i) where the moving medium is simple, it is found that
the recelving-area formula resembles that for the case of a
stationary simple medium. The only difference 1is that the motion
of the medium makes distinguishable the direction of Poynting's
vector and the direction of the propagation vector. It 1is the
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direction of the incident Poynting vector, not the direction of

the incldent propagation vector, which enters explicitly the
receiving-area formula. In case (ii) where the moving medium is
an lonized gas, it is found that the receiving pattern of a dipole
antenna is not identical to its transmitting pattern, in contra-
distinction to the case where the ionized gas is at rest. Again,
the motion of the ionized gas brings into play the direction of the
incident energy flux in the receiving-area formula.

The results of this investigation prpvide quantitative information
about the effect of the motion of a medium on the receiving
characteristics of a dipole antenna. The practical importance of
this information stems from the need of antenna designers to know
how the motions of various types of media affect the antenna
operation in reception. In this study, it is found that the motion
of an lonized gas has a more pronounced effect on the receiving
characteristics of a dipole antenna than does the motion of a non-
dispersive medium. When an ionized gas is in motion, it appears

to be not only temporally dispersive but also spatially dispersive.
In such a medium, the physical interpretations of the Poynting
vector, the field momentum, and the field energy become very
obscure. As a result, in a moving ionized gas the power conser-
vation law takes a form more general than the usual one. It is
concluded that a detailed study should be made on the electro-
magnetic properties of spatially dispersive media—a branch of
electrodynamics which has so far been neglected in the literature.
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APPENDIX

In this appendix we shall show that the generalized reciprocity
theorem for moving media is given by

[ 3 E(wav = [ 3, E (v)av, (4.1)
v Vv
1 2
or by
js [E,(v) x By(-v) - Ey(-v) x Hy(v)]-nas = o . (a.2)
The Maxwell equations for the field produced by gl are
Vx Ej = 1B, | (A.3)
Vx Hy =-1wD, + J, (A.4)
and the Maxwell equations for the field produced by 22 are
V x B, = 1UB, (A.5)
Vx H, =-iwD, + J, . (A.6)

Here and henceforth, it is understood that the field with
subscript 1 depends on v and that with subscript 2 depends on
-v. Multiplying A.4 by E, and A.6 by E, and making use of A.3
and A.5 we obtain

J1°Ep = 16Dy E, + 1¢By-Hy + V- (H; x Ep) (A.7)
Jp*E] = 16D, E; + 14B)-H, + V- (ﬂz X gl) (A.8)

Subtracting A.8 from A.7 and integrating the resulting equation
over all space, we get
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[ 1B - 2pB)aV = [ (8 x By - By x ) -pah +
* iwj (EE.QI - E]_'P.g + BQ.E]_ - El'ﬂg)dv = 0. (A.9)

By an application of Parseval's theorem the second integral on
the righthand side of A.9 can be converted into one over the
wave vector k space, i.e.,

I (E;'Dy - Eq-Dy + By-Hy - By-Hy)av =

L [ [2y0) E, (-x)-E; (1) D, (k) + Hy (k) -By(-k)
8

-B; (k) -Hy (k) Ja3k. (A.10)

We shall now show that the integrand on the righthand side of
A.10 is identically zero. To do this we first transform the
constitutive equations (egs. 15) into wave vector-frequency
space and obtain

D(w,k)

_S_(w:E) -E(N,E) +_9(w:_l'_c_) X _I__'I(w’_}ﬁ)
(A.11)
B(w,k)

p(w,kx)-H(w,k) - 0(w,k) x E(w,k)

.For moving simple media, 3,_3,_9 are constant, while for moving
ionized gases, they are functions of w-v:k. By virtue of A.1l1l
and noting that €, Y, Q are invariant under the simultaneous
transformations v »+ -vand k + -k, we can easily see that the
integrand on the righthand side of A.10 1s identically zero.
Hence, A.9 reduces to

f (3;°Ey - Ip-Bp)dv = IS(El x Hy, - E, x Hy)-ndA . (A.12)

The surface integral on the righthand side of A.12 gives no
contribution if S is chosen to be a closed surface at infinity,
and we arrive at A.1. On the other hand, if S is chosen not to
enclose the sources 21 and EQ the lefthand side of A.12 is zero,
and we arrive at A.2.
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